Перевод gate to source voltage

Параметры полевых транзисторов: что написано в даташите

Силовые инверторы, да и многие другие электронные устройства, редко обходятся сегодня без применения мощных MOSFET (полевых) или IGBT-транзисторов. Это касается как высокочастотных преобразователей типа сварочных инверторов, так и разнообразных проектов-самоделок, схем коих полным полно в интернете.

Параметры выпускаемых ныне силовых полупроводников позволяют коммутировать токи в десятки и сотни ампер при напряжении до 1000 вольт. Выбор этих компонентов на современном рынке электроники довольно широк, и подобрать полевой транзистор с требуемыми параметрами отнюдь не является проблемой сегодня, поскольку каждый уважающий себя производитель сопровождает конкретную модель полевого транзистора технической документацией, которую всегда можно найти как на официальном сайте производителя, так и у официальных дилеров.

Прежде чем приступить к проектированию того или иного устройства, с применением названных силовых компонентов, всегда нужно точно знать, с чем имеешь дело, особенно когда выбираешь конкретный полевой транзистор. Для этого и обращаются к datasheet’ам. Datasheet представляет собой официальный документ от производителя электронных компонентов, в котором приводятся описание, параметры, характеристики изделия, типовые схемы и т.д.

Давайте же посмотрим, что за параметры указывает производитель в даташите, что они обозначают и для чего нужны. Рассмотрим на примере даташита на полевой транзистор IRFP460LC. Это довольно популярный силовой транзистор, изготовленный по технологии HEXFET.

HEXFET подразумевает такую структуру кристалла, когда в одном кристалле организованы тысячи параллельно-включенных МОП-транзисторных ячеек гексагональной формы. Это решение позволило значительно снизить сопротивление открытого канала Rds(on) и сделало возможным коммутацию больших токов. Однако, перейдем к обзору параметров, указанных непосредственно в даташите на IRFP460LC от International Rectifier (IR).

В самом начале документа дано схематичное изображение транзистора, приведены обозначения его электродов: G-gate (затвор), D-drain (сток), S-source (исток), а также указаны его главные параметры и перечислены отличительные качества. В данном случае мы видим, что этот полевой N-канальный транзистор рассчитан на максимальное напряжение 500 В, сопротивление его открытого канала составляет 0,27 Ом, а предельный ток равен 20 А. Пониженный заряд затвора позволяет использовать данный компонент в высокочастотных схемах при невысоких затратах энергии на управление переключением. Ниже приведена таблица (рис. 1) предельно допустимых значений различных параметров в различных режимах.

Id @ Tc = 25°C; Continuous Drain Current Vgs @ 10V — максимальный продолжительный, непрерывный ток стока, при температуре корпуса полевого транзистора в 25°C, составляет 20 А. При напряжении затвор-исток 10 В.

Id @ Tc = 100°C; Continuous Drain Current Vgs @ 10V — максимальный продолжительный, непрерывный ток стока, при температуре корпуса полевого транзистора в 100°C, составляет 12 А. При напряжении затвор-исток 10 В.

Idm @ Tc = 25°C; Pulsed Drain Current — максимальный импульсный, кратковременный ток стока, при температуре корпуса полевого транзистора в 25°C, составляет 80 А. При условии соблюдения приемлемой температуры перехода. На рисунке 11 (Fig 11) дается пояснение относительно соответствующих соотношений.

Pd @ Tc = 25°C Power Dissipation — максимальная рассеиваемая корпусом транзистора мощность, при температуре корпуса в 25°C, составляет 280 Вт.

Linear Derating Factor — с повышением температуры корпуса на каждый 1°C, рассеиваемая мощность возрастает еще на 2,2 Вт.

Vgs Gate-to-Source Voltage — максимальное напряжение затвор-исток не должно быть выше +30 В или ниже -30 В.

Eas Single Pulse Avalanche Energy — максимальная энергия единичного импульса на стоке составляет 960 мДж. Пояснение дается на рисунке 12 (Fig 12).

Iar Avalanche Current — максимальный прерываемый ток составляет 20 А.

Ear Repetitive Avalanche Energy — максимальная энергия повторяющихся импульсов на стоке не должна превышать 28 мДж (для каждого импульса).

dv/dt Peak Diode Recovery dv/dt — предельная скорость нарастания напряжения на стоке равна 3,5 В/нс.

Tj, Tstg Operating Junction and Storage Temperature Range – безопасный температурный диапазон от -55°C до +150°C.

Soldering Temperature, for 10 seconds — допустимая при пайке максимальная температура составляет 300°C, причем на расстоянии минимум 1,6мм от корпуса.

Mounting torque, 6-32 or M3 screw — максимальный момент при креплении корпуса не должен превышать 1,1 Нм.

Далее следует таблица температурных сопротивлений (рис 2.). Эти параметры будут необходимы при подборе подходящего радиатора.

Rjc Junction-to-Case (кристалл-корпус) 0.45 °C/Вт.

Rcs Case-to-Sink, Flat, Greased Surface (корпус-радиатор) 0.24 °C/Вт.

Rja Junction-to-Ambient (кристалл-окружающая среда) зависит от радиатора и внешних условий.

Следующая таблица содержит все необходимые электрические характеристики полевого транзистора при температуре кристалла 25°C (см. рис. 3).

V(br)dss Drain-to-Source Breakdown Voltage — напряжение сток-исток, при котором наступает пробой равно 500 В.

ΔV(br)dss/ΔTj Breakdown Voltage Temp.Coefficient — температурный коэффициент, напряжения пробоя, в данном случае 0,59 В/°C.

Rds(on) Static Drain-to-Source On-Resistance — сопротивление сток-исток открытого канала при температуре 25°C, в данном случае, составляет 0,27 Ом. Оно зависит от температуры, но об этом позже.

Vgs(th) Gate Threshold Voltage — пороговое напряжение включения транзистора. Если напряжение затвор-исток будет меньше (в данном случае 2 — 4 В), то транзистор будет оставаться закрытым.

gfs Forward Transconductance — Крутизна передаточной характеристики, равна отношению изменения тока стока к изменению напряжения на затворе. В данном случае измерена при напряжении сток-исток 50 В и при токе стока 20 А. Измеряется в Ампер/Вольт или Сименсах.

Idss Drain-to-Source Leakage Current — ток утечки стока, он зависит от напряжения сток-исток и от температуры. Измеряется микроамперами.

Igss Gate-to-Source Forward Leakage и Gate-to-Source Reverse Leakage — ток утечки затвора. Измеряется наноамперами.

Qg Total Gate Charge — заряд, который нужно сообщить затвору для открытия транзистора.

Qgs Gate-to-Source Charge — заряд емкости затвор-исток.

Qgd Gate-to-Drain («Miller») Charge — соответствующий заряд затвор-сток (емкости Миллера)

В данном случае эти параметры измерены при напряжении сток-исток, равном 400 В и при токе стока 20 А. На рисунке 6 дано пояснение относительно связи величины напряжения затвор-исток и полного заряда затвора Qg Total Gate Charge, а на рисунках 13 a и b приведены схема и график этих измерений.

td(on) Turn-On Delay Time — время открытия транзистора.

tr Rise Time — время нарастания импульса открытия (передний фронт).

td(off) Turn-Off Delay Time — время закрытия транзистора.

tf Fall Time — время спада импульса (закрытие транзистора, задний фронт).

В данном случае измерения проводились при напряжении питания 250 В, при токе стока 20 А, при сопротивлении в цепи затвора 4,3 Ом, и сопротивлении в цепи стока 20 Ом. Схема и графики приведены на рисунках 10 a и b.

Ld Internal Drain Inductance — индуктивность стока.

Ls Internal Source Inductance — индуктивность истока.

Данные параметры зависит от исполнения корпуса транзистора. Они важны при проектировании драйвера, поскольку напрямую связаны с временными параметрами ключа, особенно это актуально при разработке высокочастотных схем.

Ciss Input Capacitance — входная емкость, образованная условными паразитными конденсаторами затвор-исток и затвор-сток.

Coss Output Capacitance — выходная емкость, образованная условными паразитными конденсаторами затвор-исток и исток-сток.

Crss Reverse Transfer Capacitance — емкость затвор-сток (емкость Миллера).

Данные измерения проводились на частоте 1 МГц, при напряжении сток-исток 25 В. На рисунке 5 показана зависимость данных параметров от напряжения сток-исток.

Следующая таблица (см. рис. 4) описывает характеристики интегрированного внутреннего диода полевого транзистора, условно находящегося между истоком и стоком.

Is Continuous Source Current (Body Diode) — максимальный непрерывный длительный ток диода.

Ism Pulsed Source Current (Body Diode) — максимально допустимый импульсный ток через диод.

Vsd Diode Forward Voltage — прямое падение напряжения на диоде при 25°C и токе стока 20 А, когда на затворе 0 В.

trr Reverse Recovery Time — время обратного восстановления диода.

Qrr Reverse Recovery Charge — заряд восстановления диода.

ton Forward Turn-On Time — время открытия диода обусловлено главным образом индуктивностями стока и истока.

Дальше в даташите приводятся графики зависимости приведенных параметров от температуры, тока, напряжения и между собой (рис 5).

Приведены пределы тока стока, в зависимости от напряжения сток-исток и напряжения затвор-исток при длительности импульса 20 мкс. Первый рисунок — для температуры 25°C, второй — для 150°C. Очевидно влияние температуры на управляемость открытием канала.

На рисунке 6 графически представлена передаточная характеристика данного полевого транзистора. Очевидно, чем ближе напряжение затвор-исток к 10 В, тем лучше открывается транзистор. Влияние температуры также просматривается здесь довольно отчетливо.

На рисунке 7 приведена зависимость сопротивления открытого канала при токе стока в 20 А от температуры. Очевидно, с ростом температуры увеличивается и сопротивление канала.

На рисунке 8 показана зависимость величин паразитных емкостей от приложенного напряжения сток-исток. Можно видеть, что уже после перехода напряжением сток-исток порога в 20 В, емкости меняются не значительно.

На рисунке 9 приведена зависимость прямого падения напряжения на внутреннем диоде от величины тока стока и от температуры. На рисунке 8 показана область безопасной работы транзистора в зависимости от длительности времени открытого состояния, величины тока стока и напряжения сток-исток.

На рисунке 11 показана зависимость максимального тока стока от температуры корпуса.

На рисунках а и b представлены схема измерений и график, показывающий временную диаграмму открытия транзистора в процессе нарастания напряжения на затворе и в процессе разряда емкости затвора до нуля.

На рисунке 12 изображены графики зависимости средней термической реакции транзистора (кристалл-корпус) на длительность импульса, в зависимости от коэффициента заполнения.

На рисунках a и b показаны схема измерений и график разрушительного действия на транзистор импульса при размыкании индуктивности.

На рисунке 14 показана зависимость максимально допустимой энергии импульса от величины прерываемого тока и температуры.

На рисунках а и b показаны график и схема измерений заряда затвора.

На рисунке 16 показана схема измерений параметров и график типичных переходных процессов во внутреннем диоде транзистора.

На последнем рисунке изображен корпус транзистора IRFP460LC, его размеры, расстояние между выводами, их нумерация: 1-затвор, 2-сток, 3-исток.

Так, прочитав даташит, каждый разработчик сможет подобрать подходящий силовой или не очень, полевой или IGBT-транзистор для проектируемого либо ремонтируемого силового преобразователя, будь то сварочный инвертор, частотник или любой другой силовой импульсный преобразователь.

Зная параметры полевого транзистора, можно грамотно разработать драйвер, настроить контроллер, провести тепловые расчеты, и подобрать подходящий радиатор без необходимости ставить лишнее.

Источник

Параметры MOSFET транзисторов

Основные параметры мощных транзисторов

Технологические возможности и успехи в разработке мощных полевых транзисторов привели к тому, что в настоящее время не составляет особого труда приобрести их за приемлемую цену.

В связи с этим возрос интерес радиолюбителей к применению таких MOSFET транзисторов в своих электронных самоделках и проектах.

Стоит отметить тот факт, что MOSFET’ы существенно отличаются от своих биполярных собратьев, как по параметрам, так и своему устройству.

Пришло время ближе познакомиться с устройством и параметрами мощных MOSFET транзисторов, чтобы в случае необходимости более осознанно подобрать аналог для конкретного экземпляра, а также иметь возможность понимать суть тех или иных величин, указанных в даташите.

Что такое HEXFET транзистор?

В семействе полевых транзисторов есть отдельная группа мощных полупроводниковых приборов называемых HEXFET. Их принцип работы основан на весьма оригинальном техническом решении. Их структура представляет собой несколько тысяч МОП ячеек включенных параллельно.

Ячеистые структуры образуют шестиугольник. Из-за шестиугольной или по-другому гексагональной структуры данный тип мощных МОП-транзисторов и называют HEXFET. Первые три буквы этой аббревиатуры взяты от английского слова hexagonal – «гексагональный».

Под многократным увеличением кристалл мощного HEXFET транзистора выглядит вот так.

Как видим, он имеет шестиугольную структуру.

Получается, что мощный MOSFET, по сути представляет собой эдакую супер-микросхему, в которой объединены тысячи отдельных простейших полевых транзисторов. В совокупности они создают один мощный транзистор, который может пропускать через себя большой ток и при этом практически не оказывать значительного сопротивления.

Благодаря особой структуре и технологии изготовления HEXFET, сопротивление их канала RDS(on) удалось заметно снизить. Это позволило решить проблему коммутации токов в несколько десятков ампер при напряжении до 1000 вольт.

Вот только небольшая область применения мощных HEXFET транзисторов:

Схемы коммутации электропитания.

Системы управления электродвигателями.

Усилители низкой частоты.

Ключи для управления мощными нагрузками.

Несмотря на то, что мосфеты, изготовленные по технологии HEXFET (параллельных каналов) обладают сравнительно небольшим сопротивлением открытого канала, сфера применения их ограничена, и они применяются в основном в высокочастотных сильноточных схемах. В высоковольтной силовой электронике предпочтение порой отдают схемам на основе IGBT.


Транзисторы HEXFET марки IRLZ44ZS

Изображение MOSFET транзистора на принципиальной электрической схеме (N-канальный МОП).

Как и биполярные транзисторы, полевые структуры могут быть прямой проводимости или обратной. То есть с P-каналом или N-каналом. Выводы обозначаются следующим образом:

О том, как обозначаются полевые транзисторы разных типов на принципиальных схемах можно узнать на этой странице.

Основные параметры полевых транзисторов.

Вся совокупность параметров MOSFET может потребоваться только разработчикам сложной электронной аппаратуры и в даташите (справочном листе), как правило, не указывается. Достаточно знать основные параметры:

VDSS (Drain-to-Source Voltage) – напряжение между стоком и истоком. Это, как правило, напряжение питания вашей схемы. При подборе транзистора всегда необходимо помнить о 20% запасе.

ID (Continuous Drain Current) – ток стока или непрерывный ток стока. Всегда указывается при постоянной величине напряжения затвор-исток (например, VGS=10V). В даташите, как правило, указывается максимально возможный ток.

RDS(on) (Static Drain-to-Source On-Resistance) – сопротивление сток-исток открытого канала. При увеличении температуры кристалла сопротивление открытого канала увеличивается. Это легко увидеть на графике, взятом из даташита одного из мощных HEXFET транзисторов. Чем меньше сопротивление открытого канала (RDS(on)), тем лучше мосфет. Он меньше греется.

PD (Power Dissipation) – мощность транзистора в ваттах. По-иному этот параметр ещё называют мощностью рассеяния. В даташите на конкретное изделие величина данного параметра указывается для определённой температуры кристалла.

VGS (Gate-to-Source Voltage) – напряжение насыщения затвор-исток. Это напряжение, при превышении которого увеличения тока через канал не происходит. По сути, это максимальное напряжение между затвором и истоком.

VGS(th) (Gate Threshold Voltage) – пороговое напряжение включения транзистора. Это напряжение, при котором происходит открытие проводящего канала и он начинает пропускать ток между выводами истока и стока. Если между выводами затвора и истока приложить напряжение меньше VGS(th), то транзистор будет закрыт.

На графике видно, как уменьшается пороговое напряжение VGS(th) при увеличении температуры кристалла транзистора. При температуре 175 0 C оно составляет около 1 вольта, а при температуре 0 0 C около 2,4 вольт. Поэтому в даташите, как правило, указывается минимальное (min.) и максимальное (max.) пороговое напряжение.

Рассмотрим основные параметры мощного полевого HEXFET-транзистора на примере IRLZ44ZS фирмы International Rectifier. Несмотря на впечатляющие характеристики, он имеет малогабаритный корпус D 2 PAK для поверхностного монтажа. Глянем в datasheet и оценим параметры этого изделия.

Предельное напряжение сток-исток (VDSS): 55 Вольт.

Максимальный ток стока (ID): 51 Ампер.

Предельное напряжение затвор-исток (VGS): 16 Вольт.

Сопротивление сток-исток открытого канала (RDS(on)): 13,5 мОм.

Максимальная мощность (PD): 80 Ватт.

Сопротивление открытого канала IRLZ44ZS составляет всего лишь 13,5 миллиОм (0,0135 Ом)!

Взглянем на «кусочек» из таблицы, где указаны максимальные параметры.

Хорошо видно, как при неизменном напряжении на затворе, но при повышении температуры уменьшается ток (с 51A (при t=25 0 C) до 36А (при t=100 0 С)). Мощность при температуре корпуса 25 0 С равна 80 Ваттам. Так же указаны некоторые параметры в импульсном режиме.

Транзисторы MOSFET обладают большим быстродействием, но у них есть один существенный недостаток – большая ёмкость затвора. В документах входная ёмкость затвора обозначается как Ciss (Input Capacitance).

На что влияет ёмкость затвора? Она в большой степени влияет на определённые свойства полевых транзисторов. Поскольку входная ёмкость достаточно велика, и может достигать десятков пикофарад, применение полевых транзисторов в цепях высокой частоты ограничивается.

В схемах переключения время заряда паразитной входной ёмкости транзистора влияет на скорость его срабатывания.

Важные особенности MOSFET транзисторов.

Очень важно при работе с полевыми транзисторами, особенно с изолированным затвором, помнить, что они “смертельно” боятся статического электричества. Впаивать их в схему можно только предварительно закоротив выводы между собой тонкой проволокой.

При хранении все выводы МОП-транзистора лучше закоротить с помощью обычной алюминиевой фольги. Это уменьшит риск пробоя затвора статическим электричеством. При монтаже его на печатную плату лучше использовать паяльную станцию, а не обычный электрический паяльник.

Дело в том, что обычный электрический паяльник не имеет защиты от статического электричества и не «развязан» от электросети через трансформатор. На его медном жале всегда присутствуют электромагнитные «наводки» из электросети.

Любой всплеск напряжения в электросети может повредить паяемый элемент. Поэтому, впаивая полевой транзистор в схему электрическим паяльником, мы рискуем повредить MOSFET-транзистор.

Источник

Оцените статью
( Пока оценок нет )
Поделиться с друзьями
Научные работы на RJ-diplom.ru
Adblock
detector